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Abstract

Improvements in language model capabilities
are often attributed to increasing model size or
training data, but in some cases smaller mod-
els trained on curated data or with different
architectural decisions can outperform larger
ones trained on more tokens. What accounts
for this? To quantify the impact of these design
choices, we meta-analyze 92 open-source pre-
trained models across a wide array of scales, in-
cluding state-of-the-art open-weights models as
well as less performant models and those with
less conventional design decisions. We find that
by incorporating features besides model size
and number of training tokens, we can achieve
a relative 3-28% increase in ability to predict
downstream performance compared with using
scale alone. Analysis of model design decisions
reveal insights into data composition, such as
the trade-off between language and code tasks
at 15-25% code, as well as the better perfor-
mance of some architectural decisions such
as choosing rotary over learned embeddings.
Broadly, our framework lays a foundation for
more systematic investigation of how model
development choices shape final capabilities.1

1 Introduction

The effectiveness of language model training de-
pends critically on decisions made during pretrain-
ing. For instance, the effectiveness of scaling up
data depends on its composition – processing even
a trillion tokens would be ineffective if they all
consisted of the word “the”. Language model per-
formance has been found to be fairly predictable
through scaling laws (Kaplan et al. (2020), sec-
tion 2) – extrapolations of model performance
based on the parameter counts and number of to-
kens the models were trained on. However, scaling

1Code and data are available at https://github.com/
nightingal3/llm-pretraining-behaviours for the com-
munity to build upon.
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Figure 1: We document design decisions from open-
weights models related to both architecture and data
composition, and train predictors for downstream task
performance. This allows us to examine the impact of
model design choices individually.

laws based on only these two aspects do not always
explain downstream task performance (Diaz and
Madaio, 2024; Isik et al., 2024).

The research community has made progress in
understanding how training decisions impact down-
stream performance with respect to data composi-
tion. For instance, controlled studies have demon-
strated that training on code data improves perfor-
mance on certain reasoning benchmarks (Aryabumi
et al., 2024; Petty et al., 2024), meta-features of
data such as age and the use of toxicity filters affect
performance on many QA tasks (Longpre et al.,
2024), and the balance of multilingual data af-
fects performance on English and other languages
(Chang et al., 2023; Yue et al., 2025). These works
uncover valuable insights, but they tend to focus on
changing only a single aspect of the training recipe
while keeping the rest fixed. Although rigorous,
this is costly in compute and development time.
We instead ask: can we leverage past findings from
open language models to examine how training
decisions jointly impact downstream performance?

To do so, we first catalog features regarding
the model architecture, and data of 92 base pre-
trained LMs from varied families (§3). The result-
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ing database of model features spans most major
original pretrained decoder-only models released
open-weights between the years 2019-2024.

We then develop methodology to predict per-
formance of these models across a wide array of
benchmarks both based on traditional scaling fac-
tors as well as architectural decisions and data com-
position (§4). Specifically, we train regression mod-
els that take in the extracted features and predict
the benchmark results, and further use model inter-
pretability techniques to identify the most salient
features in making these predictions.

We evaluate this methodology on predicting per-
formance across 12 popular LLM benchmarks, and
demonstrate that it is not just scaling that deter-
mines model performance – on all benchmarks the
regressor with all features outperforms a regressor
based solely on scaling model features (§5.1). Our
analysis of feature importance reveals potential im-
pacts of data domains on task performance, recon-
firming empirical results such as the best ratio of
code to use in pretraining (§5.2). Furthermore, we
find that features extracted from a model’s gener-
ated text – such as the frequency of question-related
words or the proportion of web-like text—help pre-
dict performance on various benchmarks. This sug-
gests that a model’s generation patterns can reflect
underlying biases from its pretraining data that, in
turn, influence downstream performance.

By documenting open-source models trained by
the entire community and extracting insights, we
provide a practical resource for model developers
to learn from collective experience. We discuss this
and future work in (§7).

2 Scaling Laws

2.1 Definition
We define scaling laws here as a relationship be-
tween the number of parameters N and the num-
ber of tokens D of a language model family, and
the expected language-modelling loss at conver-
gence L(N,D).2 Importantly, these laws are typi-
cally examined while holding all other factors con-
stant: keeping the same model architecture, train-
ing data, and model parameters. Originally, Ka-
plan et al. (2020) showed that over a wide range of
transformer-based models, this relationship can be
expressed as a power law:

2Please see §6.2 for more detailed discussion; scaling laws
can and do take into account other factors in various works,
but for simplicity we call N and D scale-related here, while
all other decisions in §3.2 are contrasted with these.
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Later, Hoffmann et al. (2022a) introduced a similar
law, which differed in the coefficients fitted, but
was also based on a power law.

However, scaling laws are not absolute, and the
exact functional form and fitted coefficients may
depend on the architecture type, size range (Pearce
and Song, 2024), or other considerations such as
inference costs. See (§6.2) for further discussion.

2.2 Maybe it’s Not Just Scaling?

Are parameter count and number of training tokens
really all that are needed to accurately predict a
model’s downstream performance? Intuitively the
answer is “no” – there are a number of design deci-
sions that go into model training, and all of them
could have an effect on model performance.

Model Architecture Details While the majority
of modern language models follow the transformer
architecture, there are some details that differ. For
instance, the variety (Zhang and Sennrich, 2019)
and position (Xiong et al., 2020) of layer normal-
ization, and the type of positional encoding (Su
et al., 2021; Press et al., 2022) make significant
differences in model performance. Previous work,
such as Gu and Dao (2023), has demonstrated em-
pirically that holding all other factors equal, models
that make better architecture decisions (Touvron
et al., 2023a) outperform those that make worse
decisions (Vaswani et al., 2017).

Data Composition In addition, data composition
and quality plays a major role in the final quality of
a model. For instance, past work has demonstrated
that training on some quantity of code improves
performance on English reasoning tasks (Ma et al.,
2023). Also, work has demonstrated that filtering
for “educational” content allows for more efficient
learning and higher performance on knowledge-
based question answering tasks (Gunasekar et al.,
2023).

Task Setting Finally, there is an interplay of all
the above factors with how model performance is
measured. While previous work on scaling laws
has mostly measured loss values, downstream users
usually care about task performance, rather than
validation loss on a pretraining dataset. Although
there is often a correlation between the two for
many tasks, certain tasks may be harder to predict

2



from a model’s loss alone (Bhagia et al., 2024).
Moreover, certain tasks exhibit pathological scal-
ing behaviour, such as inverse or U-shaped scaling
(Caballero et al., 2023; Wei et al., 2023; McKenzie
et al., 2024), or simply more unpredictable perfor-
mance (Isik et al., 2024).

We ask: can we more effectively predict the per-
formance of LLMs by devising a new set of “laws”
that are not just reliant on scaling-based factors?

3 Building a Database of
Publicly-Available Language Models

To approach our research question, we built a com-
prehensive database of publicly available language
models. Our database encompasses models span-
ning a wide range of sizes, from 11M to 110B
parameters,3 and includes only distinct pretrained
base models with decoder-only architectures.4 In
this section, we describe the criteria used for model
inclusion, how we featurized the models, as well
as the evaluation suite we used.

3.1 Data Collection
To ensure that our analysis was consistent, we ap-
plied the following criteria:

Pretrained-only: Only base models that were
pretrained from scratch were included. Fine-tuned
variants, merged models, and models with addi-
tional post-training were excluded.

Architecture: Only transformer-based decoder-
only models were included to maintain uniformity.
Mixture-of-experts (MoEs) or other architectures
were excluded.

Publicly available information: Only models
with publicly available metadata, documented
through configuration files or papers, were in-
cluded. In particular, both the total number of
parameters and total number of tokens trained on
were required for inclusion. A full list of models
and model families can be found in Appendix A.

3.2 Characterizing Models and Data
We represent each model by the architectural
choices it makes, as well as its choice of pretraining
data. Formally, let A be the set of features related

3Including embedding parameters.
4By distinct, we mean that each combination of training

data and model architecture decisions should be unique. Vari-
ants of the same model trained on a deduplicated dataset are
counted as separate, but not variants trained on the same data
but with different curricula/initializations.
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Figure 2: Taxonomy of pretraining data categories. We
sorted data sources into this taxonomy based on model
documentation.

to model architecture, and D be the set of features
related to the model’s pretraining dataset. For each
task T we want to approximate a model M ’s true
score sT with a prediction ŝT :

ŝT (M) = fθ([AM ;DM ]). (2)

This reduces to typical scaling laws when A =
{# params}, D = {# tokens}, and fθ is a power
law.

In total, we document 92 open models along the
dimensions of model features, high-level dataset
features, and features derived from that model’s
no-context generations. For the full set of features
and definitions, please see Appendix B.

3.2.1 Features from Model Documentation
We first collect information about each model by
reading source papers/blogs when available (see
Appendix A for original citations), as well as data
listed on the Hugging Face Hub (Wolf et al., 2020).

Architectural Features: These features capture
design decisions that determine model structure.
For example, total parameters (including embed-
ding parameters), the number of transformer layers,
the embedding and feed-forward dimensions, and
details such as the type of layer normalization or
attention variant used.

Data Features: These features summarize pre-
training data composition. Representative exam-
ples include total tokens trained on and the per-
centage breakdown of tokens sourced from vari-
ous domains defined in Figure 2, as well as the
proportion of English-language tokens. Our pre-
training data domains were derived from common
subdomains in open pretraining datasets (Gao et al.,
2020; Soldaini et al., 2024). We use the top level
domains (web, code, books, reference, academic)
as this tends to be the granularity at which data
composition is described in papers.
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3.2.2 Exploring Data Composition via
Generation

Although many models do document some details
of their data composition, relatively few release
their full pretraining corpus. Further, even when
data composition statistics are provided, they are
often presented at a high level of granularity. As
a result, many models in our study have missing
values for data composition.

To address this, we further propose an approach
of estimating the data a model was trained on by
generating from the model with a context contain-
ing just the beginning-of-sequence (BOS) token
for that model (or end-of-sequence if that model
lacked a BOS token). We use temperature-based
sampling with T = 1, as this should in principle
recover Praw(xt | x<t) ≈ P (xt | x<t) in the limit
of sampling infinitely from an LM that captures its
distribution perfectly.

We call this free-generation. However, this has
important caveats: we cannot actually sample in-
finitely, and a model does not reflect its pretraining
data perfectly. Therefore, we use this as a “fin-
gerprint” of the model’s training, but do not claim
that this reflects a model’s pretraining dataset ex-
actly. In practice, we sample between 5-10k free-
generations from each model (5k for larger models).
In addition to categorizing them (see Appendix E)
by the domains in Figure 2, we also extract lower-
level features:

Low-level data features: We aggregate per-
generation statistics that reflect data quality and
linguistic structure. Examples include the words
per sentence, the depth of the constituency tree for
natural language text, and dependency length.

3.3 Evaluation Datasets and Metrics

To assess how design choices affect reasoning ca-
pabilities, we evaluated model performance on a
curated suite of datasets derived from the first ver-
sion of the Open LLM leaderboard (Myrzakhan
et al., 2024), which was designed to capture di-
verse facets of reasoning (Table 1).5 We collect
results for some models directly from the leader-
board, and for models not on the leaderboard we
use the Eleuther LM eval harness (Gao et al., 2023)

5Arithmetic and Minerva math ((Brown et al., 2020;
Hendrycks et al., 2021)) tasks were also initially included in
this leaderboard, but we excluded them as we focused solely
on base (not instruction tuned) models, and very few were
able to achieve non-zero scores.

Commonsense Reasoning / NLI
ANLI (Nie et al., 2020) ∼ 163k Brier Score
HellaSwag (Zellers et al., 2019) ∼ 70k Accuracy
Winogrande (Sakaguchi et al., 2019) ∼ 44k Accuracy
XNLI (Conneau et al., 2018) ∼ 2.5k Brier Score

Math / Logic
GSM8K (Cobbe et al., 2021) 8 000 Accuracy
LogiQA2 (Wang et al., 2020) ∼ 8k Brier Score
MathQA (Saxton et al., 2019) ∼ 37k Brier Score

General Knowledge
ARC Challenge (Clark et al., 2018) ∼ 2.6k Accuracy
Lambada (Paperno et al., 2016) ∼ 10k Accuracy
MMLU (Hendrycks et al., 2020) ∼ 2.85k Accuracy

Other
TruthfulQA (Lin et al., 2021) 817 Accuracy
HumanEval (Chen et al., 2021) 164 Accuracy

Table 1: Overview of LM evaluation datasets with ap-
proximate sample counts, citations, and evaluation met-
rics. Datasets ANLI, XNLI, LogiQA2, and MathQA
use Brier Score, while the others use Accuracy.

to conduct evaluations with exactly the same set-
ting. In addition, if there were multiple versions of
a task or sub-tasks, we evaluated all of them and
averaged them to get the overall task score. For
the full list of evaluation datasets and settings, see
Appendix C.

For an evaluation dataset T where the i-th sam-
ple is yi and model M , we define sT (M) with:

Accuracy We use unnormalized, exact-match ac-
curacy sT,acc = 1

|T |
∑|T |

i=1 1{yi = ŷi} for the ma-
jority of tasks. We use pass@1 for Humaneval, but
group it with accuracy tasks for convenience.

Brier score For tasks where smaller models
struggle to achieve non-zero accuracy, we fol-
low Schaeffer et al. (2023) in using multiclass
brier score as an alternate continuous metric for
multiple-choice tasks (Brier, 1950). For a task
with K classes, let pik be the predicted proba-
bility for class k on sample i. Then sT,BS =
1
|T |
∑|T |

i=1

∑K
j=1(pik − 1{yi = k}).6

3.4 Heterogeneity in Task-specific Scaling

Before adding in other factors, we examine differ-
ences in scaling along N and D between our se-
lected tasks. We fit a Kaplan et al. (2020) style law
to each task. As seen in Figure 3, we see that dif-
ferent tasks may exhibit marked differences both in
how well they follow scaling trends, as well as their
individual scaling contours. For instance, Truth-
fulQA appears to exhibit U-shaped scaling, while
Humaneval has more “outlier” models. A full list

6Note that lower is better for brier score. Multiclass brier
score ranges between 0-2.
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Figure 3: Performance of plotted against their total parameters and tokens. The background colour represents
Equation 1 fitted to the task, and the marker colours indicate true performance. Some tasks have different
performance trends with scale. Within each task, individual models may also perform unexpectedly.

of R2 values for tasks can be found in Appendix D.

4 Predictive Modeling

Next, given our database we fit a regressor to try to
predict performance. In traditional scaling laws, re-
gressors are fit based on power laws. However, we
are now dealing with a larger number of features,
some of which may not be captured well by simple
parametric forms. Hence, we follow previous work
on performance prediction (Xia et al., 2020; Ye
et al., 2021) utilizing tree-based regressors based
on XGBoost (Chen and Guestrin, 2016).7

For each evaluation benchmark, we train a model
to predict the performance metric on that task based
on architectural features A and data features D.
For each task setting, we perform 3-fold cross-
validation due to the relatively small number of
models, with a nested inner cross-validation over
the training set in each fold. The inner cross-
validation conducted grid search over a small set
of hyperparameters, allowing the model to slightly
vary per task. See Appendix G for more details.

Evaluation To evaluate the predictors, we use
Mean Absolute Error averaged across all models
and folds. In other words, for a task with N models
evaluated, MAET = 1

|T |
∑N

i=1 |sT (Mi)−ŝT (Mi)|.
We compare the scaling-laws predictor as well as
the all-features predictor against each other, but
also against the median baseline, which simply
predicts the median score of the models in the train-
ing set for each model in the test set of that fold.

Iterative Feature Selection As the full set of fea-
tures is very large, we sequentially selected features
from the full set greedily based on which reduced
MAE the most, averaged across 5 random seeds.
Features were added until no reduction of at least
1× 10−4 was observed. We started using only the

7We also performed preliminary experiments with Light-
GBM (Ke et al., 2017) but it yielded very similar results in
both prediction accuracy and feature importance.

two scaling laws features, and refer to this as the
scaling-laws model, though it does not have the
form of a traditional power law.8 By then incor-
porating additional architectural or data features,
we can then directly quantify the incremental pre-
dictive power afforded by these extra features. We
refer to the model with the set of features as the
all-features model. In all cases, we ran models
with the same hyperparameter grid and the same
random seeds and splits.

Significance Testing Because the relative differ-
ence between baselines is small, we test both pre-
dictors across many seeds (50). We then ran paired
t-tests on the overall MAE values for each seed, and
corrected for multiple comparisons across tasks
with the False Discovery Rate (Benjamini and
Hochberg, 1995).

5 Results

5.1 Predictor Performance

Incorporating scale-independent features con-
sistently improves benchmark performance. We
find that incorporating extra features alongside tra-
ditional scaling laws features leads to substantial
improvements in prediction accuracy across multi-
ple benchmarks, as seen in Table 2. The all-features
predictor outperforms the scaling-laws-only predic-
tor in all evaluated cases, with improvements rang-
ing from approximately 3% (MathQA) to about
28% (Lambada) relative error reduction. No-
tably, the strongest improvements were observed in
language modeling and common-sense reasoning
tasks.

8Typically, scaling laws are used to extrapolate the perfor-
mance of larger models. Because we use a decision-tree based
predictor, our approach is less likely to extrapolate, a trade-off
we opted to take to incorporate the array of scale-independent
features we have, not all of which are numeric. Therefore,
we moreso focus on interpolating performance within the size
boundaries that we have (roughly 10M-100B parameters, and
50B-3T tokens). Examining results with a variety of other
prediction methods is an interesting direction for future work.
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Benchmark Setting Baseline MAE Scaling Laws MAE All Features MAE p-val (corrected)

Accuracy

Arc Challenge 25-shot 13.23% 4.36% ± 0.12% 3.67% ± 0.09%∗ 4.89× 10−19

GSM8k 5-shot 15.65% 6.04% ± 0.21% 5.10% ± 0.23%∗ 6.49× 10−14

Hellaswag 10-shot 12.26% 3.93% ± 0.13% 3.18% ± 0.09%∗ 6.66× 10−20

Humaneval 0-shot 11.79% 8.08% ± 0.22% 6.93% ± 0.22%∗ 1.46× 10−12

Lambada 0-shot 16.89% 9.51% ± 0.33% 6.85% ± 0.25%∗ 2.87× 10−22

MMLU (0-shot) 0-shot 11.98% 4.76% ± 0.20% 4.10% ± 0.17%∗ 6.02× 10−13

MMLU (5-shot) 5-shot 12.25% 3.97% ± 0.18% 3.54% ± 0.14%∗ 2.09× 10−10

TruthfulQA 0-shot 3.72% 2.75% ± 0.08% 2.29% ± 0.06%∗ 1.27× 10−17

Winogrande 5-shot 10.14% 3.39% ± 0.08% 3.09% ± 0.07%∗ 6.02× 10−13

Brier score

XNLI 0-shot 7.22 6.68 ± 0.11% 6.30± 0.11%∗ 3.16× 10−9

ANLI 0-shot 5.90 6.74 ± 0.19% 6.53± 0.21%∗ 3.84× 10−4

MathQA 0-shot 7.57 2.83 ± 0.06% 2.75± 0.07%∗ 1.63× 10−4

LogiQA2 0-shot 12.74 4.74 ± 0.12% 4.60± 0.15%∗ 1.37× 10−2

Table 2: Comparison of MAE values (mean ± 95% CI) for Scaling Laws and All Features predictors alongside
Baseline MAE. Lower MAE is bolded; * indicates significance (p < 0.05). Brier score values are multiplied by 100
to be on a similar scale to accuracy.

Certain tasks are more strongly dependent
on non-scale features. This pattern of improve-
ments suggests that architectural and training data
features may be more informative for predicting
performance on certain types of tasks more strongly
linked to a particular “genre” of data. Large im-
provements were observed for both code gener-
ation (HumanEval, 15% improvement) as well
as natural-language based reasoning tasks (e.g.
Lambada, 28% improvement). Even tasks with
narrower domains, such as mathematical reason-
ing (GSM8k, +16%) or knowledge-intensive eval-
uations (MMLU, +11–14%), see consistent, if
more moderate, enhancements. The Brier score
benchmarks, however, show smaller improvements
(around 3–6%). This may be because the Brier
score is inherently less sensitive to emergent effects
in model performance, the specific choice of tasks
limits the room for improvement, or a combination
of both factors.

5.2 What Features Does Task Performance
Depend On?

To better understand the factors that influence task
performance, we examine Shapley (1953) (SHAP)
values of the predictor, which provide a local view
of how individual feature values influence predic-
tions. The results and feature descriptions for Arc
Challenge, HumanEval, Winogrande, and Truth-
fulQA are shown in Figure 4, and results for re-
maining benchmarks are shown in Appendix I.

A little code goes a long way, but too much is
harmful to NLI. One of the most important non-
scaling features is the percentage of code data in

pretraining. Higher code composition results in
positive Shapley values (i.e. higher predicted per-
formance) for Humaneval, but it negatively affects
Arc Challenge, Hellaswag, Winogrande, and Lam-
bada. In the scatterplots of Figure 5, we compare
the code percentage against SHAP impact for both
small and large models. We see that models trained
with more than roughly 20–25% code are predicted
to have large gains on tasks like Humaneval, but
start to incur penalties on standard natural language
benchmarks. By contrast, a moderate code propor-
tion in the 15–25% range appears to balance these
competing demands, yielding a more neutral or
slightly positive effect overall.

Other domains of data can occasionally yield
task-specific effects. While the percentage of code
in pretraining is consistently selected as an impact-
ful feature, with clear trade-offs, this other pretrain-
ing domains are selected less frequently. From
the fine-grained features from free generations, we
also observed that many recent models (particu-
larly those trained on synthetic data such as the Phi
(Gunasekar et al., 2023) and SmolLM (Allal et al.,
2024)) generate a relatively large number of ques-
tion words, indicating extensive training on data
related to question answering. A higher percentage
of reference-like or question-loaded generations re-
sulted in better model accuracy on some tasks such
as Arc Challenge and Winogrande. Additionally,
models that generate more web-like data tend to do
worse on TruthfulQA (Figure 4).

Non-scale architectural decisions have minor
effects. Most highly influential features were data-
related or architectural features related to scale

6



Feature Name Description

[D] Total Tokens (B) Total number of tokens used during pretraining, measured in billions
(log scale).

[A] Total Parameters Total number of parameters in the model (log scale).
[D] % Code in Pretraining Percentage of pretraining data that consists of code.
[F] Question Words Ratio Ratio of question-related words generated by the model.
[A] Dimension Embedding dimension.
[A] Sequence length Sequence length.
[A] LayerNorm Type of layer normalization used (non-parametric, parametric, rmsnorm).
[A] Biases Presence of bias parameters in the model.
[A] Positional Embeddings Type of positional embedding used (alibi, learned, rope).
[F] % English Generated Percentage of English text generated by the model.
[D] % Academic in Pretraining Percentage of pretraining data from academic sources.
[D] % Reference in Pretraining Percentage of pretraining data from reference sources.
[F] % Generated Weblike Text Percentage of web-like text generated by the model.
[F] % Generated Reference Text Percentage of reference-like text generated by the model.
[D] % Books in Pretraining Percentage of pretraining data from books.
[D] % English in Pretraining Percentage of English text in the pretraining data.

Figure 4: In all tasks, the number of parameters and pretraining tokens heavily influences the predictions made
by the regressor. The percentage of code in pretraining often influences predictions negatively for NLI tasks but
positively for Humaneval. [D], [A] and [F] denote features derived from data, architecture, or free-generations of a
model respectively.

(e.g., dimension). However, both the type of layer
norm and the positional embedding were deemed
to have a significant effect in some cases.

6 Related Work

6.1 Empirical Data Composition Results

Prior work has examined the effects of including
code during pretraining (Ma et al., 2023; Aryabumi
et al., 2024) and ablating domains such as C4 or
books from The Pile (Longpre et al., 2024). Data
filtering has also been shown to improve perfor-
mance beyond scaling alone by removing low-
quality data (Sorscher et al., 2023; Goyal et al.,
2024). Our results align with prior findings, in-
dicating that code can enhance natural language
reasoning at moderate proportions but degrades
performance at higher percentages. We estimate an

optimal code ratio of 15-25%, refining prior work
suggesting 25% (Aryabumi et al., 2024), though
intermediate ranges were not tested in their study.
Our approach—first pooling insights from existing
models—complements empirical ablations by iden-
tifying useful axes of variation for further testing.

6.2 Observational and Task-Specific Scaling
Law Fitting

Previous works have examined task-specific scal-
ing laws. In machine translation, parameter allo-
cation between encoder and decoder affects out-
comes, and incorporating machine-translated data
can be detrimental (Ghorbani et al., 2021). Mul-
tilingual studies reveal that language similarity
doesn’t impact scaling trends; however, multitask-
ing offers greater benefits when English is the tar-
get language (Fernandes et al., 2023). Scaling
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Figure 5: SHAP impact of code percentage on Lambada
(reprentative NL task) and Humaneval on our regressors.

laws for downstream tasks and transfer learning
have been proposed, emphasizing that alignment
between pretraining data and downstream tasks
is crucial for performance prediction (Hernandez
et al., 2021; Isik et al., 2024). Data repetition has
been considered, especially in data-constrained do-
mains (Muennighoff et al., 2024), with extensions
to multiple data domains (Goyal et al., 2024). Al-
ternative scaling formulations address factors like
sparsity (Frantar et al., 2023), precision (Kumar
et al., 2024), and inference costs (Hoffmann et al.,
2022b). In contrast, some studies find stable per-
formance across various batch sizes and learning
rates (DeepSeek-AI et al., 2024a).

Ruan et al. (2024) also use observations from
open-source models to predict task performance,
but derive their predictions of one task’s perfor-
mance from performance on other tasks. We
find a similar result in identifying two axes of
performance– general natural language ability and
coding ability but are motivated instead by tracing
these capabilities back to pretraining decisions.

6.3 Pretraining Data Selection

Domain mixing has been studied in pretraining,
and other works have formulated this as a regres-
sion problem (Ye et al., 2024; Liu et al., 2025) or
used proxy models to select domain weights in
the course of training (Xie et al., 2023; Albalak
et al., 2023; Jiang et al., 2024b; Yu et al., 2025). In
contrast, we retrospectively analyze how domain
composition and training decisions influence per-
formance across tasks, which is a complementary
perspective to optimizing data weights for a single

model during training.

6.4 Tracing Capabilities to Data
Specific language model capabilities have been
linked to patterns in pretraining data. Performance
on numerical reasoning and syntactic rule learn-
ing depends on frequency of numerical terms in
the training data (Kassner et al., 2020; Wei et al.,
2021). Ruis et al. (2024) found that influential data
for reasoning is dispersed across numerous doc-
uments and is associated with procedural content.
Similarly, Chen et al. (2024) observed that "parallel
structures" are closely tied to in-context learning
abilities. We currently focus on broader data do-
mains, but our framework can be extended with
more granular tasks or refined data features.

7 Conclusion and Future Work

We perform the first systematic analysis of the per-
formance of open language models across diverse
tasks and tie their performance to architectural and
data-compositional design decisions. Looking into
the future, there are a number of clear directions.
First, our database (§3) can be further expanded as
new models and benchmarks are released, and we
will release the code and data to help spur commu-
nity efforts for more systematic data documenta-
tion. Second, we hope our work will help discover
hypotheses to be tested in more controlled settings
– existing models intertwine a number of design
decisions, and further controlled pre-training ex-
periments that only involve one axis of variation
could further clarify the effect of each feature. Fi-
nally, within our study, the great majority of pre-
trained models focused on dense transformer ar-
chitectures, while alternative architectures such as
mixture-of-experts (Jiang et al., 2024a; DeepSeek-
AI et al., 2024b) and state-space models (Gu and
Dao, 2023) have also seen significant research in-
terest. How to appropriately featurize these more
various model architectures and use the informa-
tion in performance prediction is an interesting
challenge that may uncover further insights. Lastly,
although pretraining data analysis and selection
has mainly been focused on empirical findings so
far, building a better understanding of how training
impacts model capabilities through large-scale em-
pirical studies could also facilitate interpretability
experiments and possible interventions on learned
representations, with controlled axes of variation
providing case studies.
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Limitations

Our current work has several limitations that can
be improved in future work. First, although we
document many open models, our sample size re-
mains limited, particularly for larger (>50B) pa-
rameter models. This limits our ability to draw
robust conclusions about scaling behaviour in large
models. Additionally, the models that we have are
not evenly distributed across number of parameters,
data size, and data distributions, with certain size
ranges and data distributions being overrepresented.
There are also likely selection effects in which mod-
els are made open-weights, as well as likely time
effects in popular architectural decisions or data
compositions in different time periods.

Second, our methodology also imposes some
limitations. Because we do not systematically train
all our own models (though we have a few of our
own in Appendix A), our analyses are observational
in nature. While we can observe interesting rela-
tionships between design choices and performance,
making causal claims requires experimental vali-
dation. Additionally, while tree-based regressors
are effective for capturing complex feature interac-
tions, they limit our ability to extrapolate beyond
the range of model sizes (in parameters and tokens)
seen in our dataset.

Last, we note that the scope of our work also has
limitations. Namely, we focus on base pretrained
decoder-only dense transformer models, which ex-
cludes significant architectural variants such as
mixture-of-experts models, non-transformer based
architectures, as well as post-trained models. Ad-
ditionally, we examine mostly English-language
models as we do not focus on multilinguality in
this work. Our feature set, while extensive, may
also not capture all relevant details of model design
and training, particularly optimization details as of
now.

These limitations suggest directions for future
work: expanding the database to include more di-
verse model types and language coverage, devel-
oping more targeted functional forms that allow
better extrapolation while also taking as input a
heterogeneous feature set, as well as conducting
targeted experiments with new pretrained models
to validate the impact of specific design choices.

Ethical Considerations

In this work, we focus on understanding why mod-
els may perform well on standard benchmarks, but

do not focus on other important considerations such
as safety or societal bias.

Furthermore, our analysis focuses on English-
language models and benchmarks. This limitation
reflects but may also reinforce the field’s existing
bias toward English, potentially contributing to un-
derinvestment in developing effective architectures
for other languages.
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Table 3: Model Parameter Counts by Organization (sorted by size)

Organization Model Name Parameters

EleutherAI (Biderman et al., 2023) pythia-14m 14M
EleutherAI pythia-70m-deduped 70M
EleutherAI pythia-70m 70M
facebook (Meta AI, 2022a) opt-125m 125M
EleutherAI (Black et al., 2021) gpt-neo-125m 125M
HuggingFaceTB (Allal et al., 2024) SmolLM-135M 135M
EleutherAI pythia-160m 160M
EleutherAI pythia-160m-deduped 160M
None (this paper) llama2_220M_nl_100_code_0 220M
None (this paper) llama_220M_nl_80_code_20 220M
None (this paper) llama2_220M_nl_40_code_60 220M
None (this paper) llama2_220M_nl_20_code_80 220M
None (this paper) llama2_220M_nl_0_code_100 220M
Salesforce (Nijkamp et al., 2023) codegen-350M-mono 350M
Salesforce codegen-350M-multi 350M
Salesforce codegen-350M-nl 350M
facebook opt-350m 350M
HuggingFaceTB SmolLM-360M 360M
EleutherAI pythia-410m-deduped 410M
EleutherAI pythia-410m 410M
facebook (Meta AI, 2022b) xglm-564M 564M
EleutherAI pythia-1b-deduped 1B
bigscience (BigScience Workshop
et al., 2023)

bloom-1b7 1B

EleutherAI pythia-1b 1B
cerebras (Cerebras Systems, 2023) Cerebras-GPT-1.3B 1.3B
microsoft (Li et al., 2023) phi 1.5 1.3B
EleutherAI gpt-neo-1.3B 1.3B
EleutherAI pythia-1.4b 1.4B
EleutherAI pythia-1.4b-deduped 1.4B
HuggingFaceTB SmolLM-1.7B 1.7B
Salesforce codegen-2B-mono 2B
Salesforce codegen-2B-nl 2B
Salesforce codegen-2B-multi 2B
google (Gemma Team et al., 2024b) gemma-2-2b 2B
cerebras Cerebras-GPT-2.7B 2.7B
EleutherAI gpt-neo-2.7B 2.7B
NinedayWang (Xu et al., 2022) PolyCoder-2.7B 2.7B
facebook opt-2.7b 2.7B
microsoft (Abdin et al., 2023) phi 2 2.7B
EleutherAI pythia-2.8b 2.8B
EleutherAI pythia-2.8b-deduped 2.8B
facebook xglm-2.9B 2.9B
Qwen (Qwen et al., 2025) Qwen2.5-3B 3B
cerebras (Dey et al., 2023) btlm-3b-8k-base 3B

Continued on next page
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Table 3 – Continued from previous page

Organization Model Name Parameters

openlm-research (Geng and Liu,
2023)

open_llama_3b_v2 3B

rinna (Sawada et al., 2024) bilingual-gpt-neox-4b 4B
Dampish StellarX-4B-V0 4B
facebook xglm-4.5B 4.5B
Salesforce codegen-6B-multi 6B
EleutherAI (Wang and Komatsuzaki,
2021)

gpt-j-6b 6B

Salesforce codegen-6B-nl 6B
Salesforce codegen-6B-mono 6B
cerebras Cerebras-GPT-6.7B 6.7B
facebook opt-6.7b 6.7B
EleutherAI pythia-6.9b-deduped 6.9B
EleutherAI pythia-6.9b 6.9B
Qwen (Bai et al., 2023) Qwen-7B 7B
aisingapore (Lowphansirikul et al.,
2021)

sea-lion-7b 7B

bigscience bloom-7b1 7B
google (Gemma Team et al., 2024a) gemma-7b 7B
mosaicml (MosaicML NLP Team,
2023)

mpt-7b 7B

openlm-research open_llama_7b 7B
tiiuae (Institute, 2023) falcon-7b 7B
allenai (for AI, 2024) OLMo-7B-hf 7B
huggyllama (Touvron et al., 2023a) llama-7b 7B
LLM360 (Liu et al., 2023) Amber 7B
LLM360 CrystalCoder 7B
facebook xglm-7.5B 7.5B
meta-llama (AI, 2023) Meta-Llama-3-8B 8B
google gemma-2-9b 9B
01-ai (01. AI et al., 2025) Yi-9B 9B
EleutherAI pythia-12b 12B
EleutherAI pythia-12b-deduped 12B
cerebras Cerebras-GPT-13B 13B
meta-llama (Touvron et al., 2023b) Llama-2-13b-hf 13B
Qwen Qwen1.5-14B 14B
Qwen Qwen2.5-14B 14B
Salesforce codegen-16B-nl 16B
Salesforce codegen-16B-mono 16B
EleutherAI gpt-neox-20b 20B
mosaicml mpt-30b 30B
Qwen Qwen2.5-32B 32B
Qwen Qwen1.5-32B 32B
AbacusResearch Jallabi-34B 34B
01-ai Yi-34B 34B
01-ai Yi-34B-200K 34B
meta-llama Llama-2-70b-hf 70B
meta-llama (AI, 2023) Meta-Llama-3.1-70B 70B

Continued on next page
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Table 3 – Continued from previous page

Organization Model Name Parameters

meta-llama Meta-Llama-3-70B 70B
Qwen (Qwen et al., 2025) Qwen2-72B 72B
Qwen Qwen2.5-72B 72B
Qwen Qwen1.5-110B 110B
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B List of all architectural and data
features

B.1 Architectural Features
Note that features in this section are collected from
official documentation (e.g. huggingface model/-
data cards or original papers).

• Total parameters - the total number of pa-
rameters (embedding included) in the model.
Note that we only include decoder-only dense
models.

• Dimension - the embedding dimension.

• Num heads - the number of attention heads.

• MLP ratio - the ratio of FFN dimension
embedding dimension .

• Positional Embeddings - the type of po-
sitional embedding. This is either non-
parametric (sinusoidal or fixed embeddings),
learned (just learned as a vector per position),
rope (rope embeddings), or alibi (technically
not an embedding, but included here due to
its functional purpose)

• LayerNorm - the type of layernorm applied.
This is either non-parametric (just an arith-
metic based normalization), parametric (simi-
lar, but with some learnable parameters such
as scaling/biases), and RMSNorm (a simpli-
fied version of parametric)

• Attention variant - The broad type of atten-
tion used. This is either full (vanilla attention),
local (each token position only attends to posi-
tions around it), mqa (multi-query attention),
or gqa (grouped-query attention)

• Biases - whether or not bias terms are present
in parts of the model. Either none (no biases),
attn only (only in attention layers), ln only
(only in layer norm)

• Block type - whether or not the transformer
blocks are computed in parallel at all. Se-
quential indicates not, while parallel indicates
some parallelism in attention or FFN layers.

• Activation - the activation function used. Ei-
ther relu, gelu/gelu variations, silu, or swiglu.

• Sequence length - the sequence length.

• Batch instances - the batch size used during
pretraining.

B.2 Data Features
Note that features in this section are collected from
official documentation (e.g. huggingface model/-
data cards or original papers).

• Total tokens (B) - total number of tokens used
during pretraining, measured in billions (con-
verted to log scale)

• % Web in Pretraining - Percentage of pre-
training data from general web sources.

• % Code in Pretraining - Percentage of pre-
training data that consists of code.

• % Books in Pretraining - Percentage of pre-
training data from books.

• % Reference in Pretraining - Percentage of
pretraining data from reference sources.

• % Academic in Pretraining - Percentage of
pretraining data from academic sources.

• % English in Pretraining - Percentage of
English text in the pretraining data.

B.3 Freegen-derived Features
These features are derived from model generations.
For each model, 5–10k generations are extracted
and the following metrics are aggregated (by mean
and standard deviation). However, bigram entropy,
the educational classifier score, and domain classi-
fications are exceptions, as they are computed once
across all generations.

We use Stanza (Qi et al., 2020) to generate the
parse-based features after classifying generations
by language. We only include languages that are
supported by stanza in the final set of generations
that the parse features are based on.

B.3.1 Generation Length & Basic Statistics
• Mean Character Length – Average number

of characters per generation (capped at 2048).

• Mean Tokens Generated – Average number
of tokens per generation.

• Mean Sentences – Average number of sen-
tences per generation.

• Mean Words – Average number of words per
generation.

• Mean Words per Sentence – Average num-
ber of words per sentence.
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B.3.2 Constituency Parse Features
• Mean Depth of Deepest Parse Tree – Av-

erage maximum constituency tree depth per
generation.

• Mean Depth of Parse Trees – Aver-
age constituency tree depth across all sen-
tences/phrases.

• Mean Word Depth – Average depth of words
within constituency trees.

• Mean Word Depth Variation – Average stan-
dard deviation of word depths across sen-
tences/phrases.

B.3.3 Dependency Parse Features
• Mean 90th-Percentile Dependency Head

Distances – For each generation, compute
the 90th-percentile of the linear distances be-
tween words and their dependency head, then
average these values.

• Mean Maximum Dependency Head Dis-
tances – Average maximum distance from any
word to its dependency head per generation.

• Mean Median Dependency Head Distances
– Average median dependency-head distance
per generation.

• Mean Maximum Dependency Root Dis-
tances – Average maximum distance from
any word to the sentence root per generation.

• Mean Mean Dependency Root Distances –
Average of the mean distances from words to
the sentence root per generation.

• Mean Median Dependency Root Distances
– Average of the median distances from words
to the sentence root per generation.

B.3.4 Domain Classification Features
• % Generated Academic-like Text – Percent-

age of generations classified as academic-like.

• % Generated Books-like Text – Percentage
of generations classified as books-like.

• % Generated Code-like Text – Percentage
of generations classified as code-like.

• % Generated Reference-like Text – Percent-
age of generations classified as reference-like.

• % Generated Specialized Text – Percentage
of generations classified as specialized (e.g.,
music scores, chess PGNs, biomedical data).

• % Generated Web-like Text – Percentage of
generations classified as web-like.

B.3.5 Classifier and Language Metrics

• Mean Educational Classifier Score – Aver-
age score assigned by the educational classi-
fier.

• % Generated English Text – Average per-
centage of text generated in English.

B.3.6 Lexical Diversity and Entropy Metrics

• Mean Bigram Entropy – Average entropy
computed on bigrams across generations.

• Type-Token Ratio – Average ratio of unique
tokens to total tokens.

• Unique Tokens – Average number of unique
tokens per generation.

B.3.7 Lexical and Stylistic Features

• Content-Function Ratio – Ratio of content
words (nouns, verbs, adjectives, adverbs) to
function words.

• Question Words Ratio – Ratio of question-
related words (e.g. how, what, why, when,
where, who, which, whose) per 100k words.

• Imperative Words Ratio – Ratio of impera-
tive words (e.g. do, make, consider, take, use,
ensure, check, build, apply, run, create, find,
go, try, turn, start, stop, put, keep, leave, get,
move) per 100k words.

• Conjunctions Ratio – Ratio of conjunction
words (e.g. and, but, or, so, because, although,
however, therefore, yet) per 100k words.

• Instruction Words Ratio – Ratio of
instruction-oriented phrases (e.g. “Question:”,
“Answer:”, “Instruction:”, “User:”, “Assis-
tant:”, “Q:”, “A:”) per 100k words.

• Numbers Ratio – Ratio of numerical tokens
in the generated text.
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Task Name # Models Evaluated
Commonsense Reasoning / NLI

ANLI 82
HellaSwag 92
Winogrande 92
XNLI 82

Math / Logic
GSM8K 92
LogiQA2 82
MathQA 82

General Knowledge
ARC Challenge 92
Lambada 92
MMLU 92

Other
TruthfulQA 92
HumanEval 91

Table 4: Number of models evaluated for each bench-
mark task. Note that some models encountered technical
errors when being loaded or in lm-eval-harness. The
number of models will continue to be updated.

C List of all evaluations and settings

Although we ideally would evaluate the full cross-
product of models and tasks, we found that due to
some models being incompatible with LM Evalu-
ation Harness and compute constraints we could
not evaluate all 92 models on every dataset. We list
in Table 4 the number of evaluations we currently
have for each benchmark and will continue to fill
out evaluations in the database.

D Task Deviations from Kaplan-style
Scaling Laws

In Table 5, we document the R2 value for a fitted
power law on the performance of each model.

E Free-generation Domain Classification

We classify model generations into top-level do-
mains with GPT-4o-mini. We found that this
multi-stage prompt Listing 1, Listing 2 had rea-
sonable precision on a sample of Dolma by domain
(Soldaini et al., 2024), so use it to classify free-
generations.

Benchmark R2

gsm8k 0.85
arc challenge 0.82
hellaswag 0.80
winogrande 0.80
mmlu 5-shot 0.80
mmlu 0-shot 0.74
mathqa 0.70
ANLI 0.61
humaneval 0.61
lambada 0.55
LogiQA2 0.50
XNLI 0.41
truthfulqa 0.29

Table 5: Overview of R2 values by benchmark.

F Free-generation Examples

Llama-2-70B, web-like: Gwen Stefani Couldn’t
Recognize Her First Song at an Event with Blake
Shelton What’s the first song you ever wrote and
or recorded? And how would you feel if you never
heard it again until you were Facetiming with hun-
dreds of thousands of people while attending a big
country music event? That’s exactly what hap-
pened to Gwen Stefani, when she was honored
at the Country Radio Seminar event this week.
In Nashville, . One can only imagine that when
you’ve had as crazy a career as she’s had, it may be
a chore to actually remember all of the milestones
over the years, but just imagine also doing it on
the spot, for everyone to see. Well, as it turns out,
the doubly talented Dolly Parton was set to intro-
duce Gwen as “an artist who broke barriers” when
she cited the lyrics from one of Stefani’s first-ever
“country” songs. . . “year 3,000.” The diplomatic
“The Voice” coach Blake Shelton interjected at the
video she was showing at that moment, asking “was
there other work done ....

phi-2, books-like: The sun glistened brightly
in the evening sky, casting warm rays across the
quaint little kitchen where a pair of diligent par-
ents were preparing a scrumptious meal. The air
was filled with anticipation as they embarked on a
culinary adventure, their hearts filled with love and
joy.

With their sleeves rolled up, the parents deftly
wielded an assortment of sharp knives, each one
an extension of their skill and precision. Like
artists with their brushes, they delicately maneu-
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vered through the ingredients, dancing with knives
as their partners. The blades moved with a swift-
ness that defied the physics of everyday movements,
gliding through the air with grace and purpose.

...
Qwen2-72B, reference (instruct)-like: Chil-

dren: Family ticket (at most 2 adults and 2 chil-
dren) $23.00 (1) Mr Black wants to see the film
with his wife and two sons (they’re both over 9),
how much should he pay?____ A. $23. B. $46. C.
$48. D. $49. (2)Mr Brown wants to see the film
with his 5-year-old twin sons, how much should
he pay____. A. $18. B. $23. C. $28.5 D. $32
(3)Lisa can’t see snow in this film.____ A. True B.
False (4). Jane is a maths teacher and she has two
daughters (she’s 12 and her sister is 8). They want
to see the film. How much should she pay?____ A.
$28.5 B. $27 C. $33 D. $26.5 (5) Mike is sixteen.
Today is Saturday and he wants to see the film with
his 40-year-old parents. They will pay____ for the
tickets. A. $22.

OPT-6.7B, web-like: I don’t think this is a ques-
tion. It’s a statement. I say get a dog, the world is
better with dogs.

I said to myself the exact same thing. I don’t
know why you were down-voted.

because reddit is a bunch of people who hate
dogs.

Codegen-16B-mono, code-like:
1 from typing import Optional
2

3 from fastapi import FastAPI
4 from pydantic import BaseModel
5

6 app = FastAPI ()
7

8

9 class Item(BaseModel):
10 name: str
11 price: float
12 is_offer: Optional[bool] = None
13

14

15 @app.get("/")
16 def read_root ():
17 return {"Hello": "World␣from␣

FastAPI"}
18

19

20 @app.get("/items/{ item_id}")
21 def read_item(item_id: int , q:

Optional[str] = None):
22 return {"item_id": item_id , "q": q}
23

24

25 @app.put("/items/{ item_id}")
26 def update_item(item_id: int , item:

Item):
27 return {"item_name": item.name ,

"item_id": item_id}

Pythia-410M, academic-like (patent): This
invention relates to new and improved methods
and apparatus for removing solid waste material
from the waste stream of a power station where the
solid waste material is intended for disposal after
completion of the power plant.

Various attempts have previously been made to
remove solid waste from the waste stream of plants.
This is true, for example, to the discharge of sludge
which is generally collected into a sludge tank and
washed out of the plant in a washing tank which
is generally connected to an open drain outlet of
the plant. This prior art is discussed by U.S. Pat.
No. 3,623,579 which issued to G. R. Clark and
described a method for treating the waste stream to
remove solid waste by flocculating and flocculating
and agitating the solids in a tank to break bonds
between the solid particles.

Furthermore, an apparatus was described by
U.S. Pat. No. 4,016,823 which describes a
method in which liquid sewage is removed from
the waste stream and from the sewage treatment
plant where the solid waste being removed is to
be treated to produce ammonia-purified water for
use in bathing baths or soaps and where the sewage
from the wastewater treatment plant is removed to
the sewage processing plant where this sewage is
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mixed with water or treated as a fertilizer.
...

G XGBoost Settings

For the inner grid search, the maximum depth of
trees was in [2, 3, 5], while the learning rate was
in [0.01, 0.1, 0.3] and the number of trees was in
[50, 100].

H Selected Features by Task

In Table 6, we show the selected features per bench-
mark.

I SHAP Plots for remaining benchmarks

SHAP plots for the remaining benchmarks can be
found in Figure 6 – Figure 14. Please note that
lower scores are better for Brier score tasks (ANLI,
XNLI, MathQA, LogiQA2)
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Figure 7: SHAP values for Lambada

0.15 0.10 0.05 0.00 0.05 0.10 0.15
SHAP value (impact on model output)

[D] % English in Pretraining

[A] LayerNorm

[A] Positional Embeddings

[A] Dimension

[D] % Code in Pretraining

[A] Total Parameters

[D] Total Tokens (B)

hellaswag_10-shot

[A] LayerNorm
non-parametric
parametric
rmsnorm

[A] Positional Embeddings
alibi
learned
ropeLow

High

Fe
at

ur
e 

va
lu

e

Figure 8: SHAP values for Hellaswag
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Figure 9: SHAP values for MMLU 0-shot
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Figure 10: SHAP values for MMLU 5-shot
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Figure 11: SHAP values for ANLI
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Figure 12: SHAP values for XNLI
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Figure 13: SHAP values for MathQA
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Figure 14: SHAP values for LogiQA2
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Listing 1: Multistage classification prompt.

<PROMPT 1>. [SYSTEM] You are a system tasked with classifying documents. First, determine if this
document is relatively coherent. These documents are generated by language models, so they may
not make sense. Classify a document as incoherent ONLY if it shows extreme repetition, code
mixes in a way that does not make sense (such as different languages referencing entirely
different subjects), or if it is mostly gibberish. Don’t worry about logic errors or factual
inconsistencies. If multiple documents are mixed into one, classify it as incoherent. Respond
ONLY with "incoherent" if the document is incoherent, otherwise respond with "not_incoherent"

[USER] Please classify the document as incoherent or not_incoherent.\nDocument: {document}

If not incoherent...
<PROMPT 2>. [SYSTEM] Determine if this document contains programming code. Look for:
1. Programming language keywords (def, class, import, etc)
2. Code blocks (marked with backticks, indentation patterns)
3. Stack Overflow-style Q&A about programming
4. File extensions (.py, .js, etc)
5. Documentation about code/config files

Respond ONLY with:
- "code" if ANY of these are present
- "not_code" otherwise
[USER] Please classify the document as code or not_code.\nDocument: {document}

If not code...
<PROMPT 3> [SYSTEM] For documents WITHOUT programming code, determine if this is web content. Web

content includes news articles, social media and online forums, blog posts, shopping websites,
and other general websites. This includes a wide variety of content, and anything that looks
like it may be a web article at all should be included. Look for:

1. URLs or hyperlinks
2. Social media formatting (@mentions, #hashtags)
3. "Click here" or UI elements
4. Comment threads or forum posts
5. Shopping/e-commerce language
6. Bylines or author names
7. Descriptions of products or product features

Respond ONLY with:
- "web" if ANY of these are present
- "not_web" otherwise

[USER] Please classify the document as web or not_web.\nDocument: {document}

If not web...
<PROMPT 4> [SYSTEM] For documents WITHOUT programming code, determine if this is academic or

patent-related content. Academic content consists of research papers and snippets of research
in both sciences and humanities, as well as patent applications. Student essays or assignments
should also be included in this category. Look for:

1. Citations or references
2. Latex formatting such as equations or tables
3. Formal academic language, not aimed at educating a general audience
4. Technical jargon or domain-specific terminology
5. Patent numbers or legal language (but not court documents, only patents)

Do NOT classify as academic if the document:
- Only uses occasional technical terms
- Is a popular science article or description of a scientific study, rather than the study itself
- Is educational but aimed at a general audience

Respond ONLY with:
- "academic" if ANY of these are present
- "not_academic" otherwise
[USER] Please classify the document as academic or not_academic.\nDocument: {document}
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Listing 2: Multistage classification prompt (contd).
If not academic...
<PROMPT 5> [SYSTEM] For documents WITHOUT programming code, determine if this is a book, reference

material (including media content), or a specific dataset. Books include literary works,
fiction, and narrative nonfiction. Reference material includes wikipedia, dictionaries,
textbooks and textbook like content, and encyclopedias. Please note that reference should also
include instruction or human preference datasets for language model training. Media content
includes podcasts, subtitles, and other media-related text. Specific datasets are unique and
not covered by the other categories, such as biomedical datasets or molecules, chess PGNs or
specific data formats not covered by any other category. Look for:

For the books category:
1. Chapter headings or book titles
2. Fictional character names or dialogue
3. For literary nonfiction, look for a more narrative and less didactic tone
4. Extended narrative prose or dialogue
Do NOT classify as books if the document:
- Only has a single dialogue snippet
- Could be a web article
- Is primarily informational or educational (use reference instead)

For the reference category:
1. Definitions or explanations of terms
2. Encyclopedic formatting
3. Textbook-like language
4. Explanations or examples meant to educate a reader
5. Chat formatting like ’User:/Assistant:’ or similar tokens
6. Court documents or legal language (NOT patents)
7. Wikipedia headers such as ’references’ or ’external links’

For the media category (should be classified as reference):
1. Audio or video timestamps
2. Subtitles or captions

For the specific datasets category:
1. Unique names or identifiers
2. Dataset-specific formatting
3. Data or metadata descriptions

If this seems to be a web document (social media, news, blogs, forums, shopping), you can also back
off to the ’web’ category.

Respond ONLY with:
- "books" if the document is a book
- "reference" if the document is reference material
- "specific_datasets" if the document is a specific dataset
- "web" if the document is web content
- "unknown" if none of these are present

[USER] Please classify the document as books, reference, media, specific_datasets, or
unknown.\nDocument: {document}"
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Table 6: Greedily-selected features per benchmark.

Benchmark Selected Features

arc challenge (25-shot) total params, pretraining summary total tokens billions, question words
ratio, layer norm type, dimension, pretraining summary percentage code

gsm8k (5-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage reference, edu classifier std, pretraining summary per-
centage books

hellaswag (10-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage code, pretraining summary percentage reference, posi-
tional embeddings, pretraining summary percentage academic

mmlu 0-shot (0-shot) total params, pretraining summary total tokens billions, layer norm type,
activation, pretraining summary percentage code

truthfulqa (0-shot) total params, pretraining summary total tokens billions, domain web pct
mean, dep parse dep root dist max mean, pretraining summary percentage
english, entropy mean, layer norm type

winogrande (5-shot) total params, pretraining summary total tokens billions, question words ra-
tio, layer norm type, pct english mean, positional embeddings, pretraining
summary percentage books, pretraining summary percentage code, block
type

anli (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage code, pretraining summary percentage web, pretraining
summary percentage books, positional embeddings

logiqa2 (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage web, domain reference pct mean, dep parse dep root dist
mean std, dep parse dep root dist median std

mathqa (5-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage books, num heads

xnli (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage web

lambada (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage code, block type

mmlu 5-shot (5-shot) total params, pretraining summary total tokens billions, sequence length,
biases, num heads, dimension, edu classifier mean, pretraining summary
percentage academic

gsm8k (5-shot) total params, pretraining summary total tokens billions, instructions words
ratio, pretraining summary percentage academic, sequence length, mlp
ratio

humaneval (0-shot) total params, pretraining summary total tokens billions, pretraining sum-
mary percentage code, layer norm type, pretraining summary percentage
english, biases
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