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ABSTRACT

Neural networks excel in many tasks but often struggle with compositional gener-
alization—the ability to understand and generate novel combinations of familiar
components. This limitation hampers their performance on tasks requiring sys-
tematic reasoning beyond the training data. In this work, we introduce a training
method that incorporates an explicit compositional regularization term into the
loss function, aiming to encourage the network to develop compositional repre-
sentations. Contrary to our expectations, our experiments on synthetic arithmetic
expression datasets reveal that models trained with compositional regularization
do not achieve significant improvements in generalization to unseen combinations
compared to baseline models. Additionally, we find that increasing the complex-
ity of expressions exacerbates the models’ difficulties, regardless of compositional
regularization. These findings highlight the challenges of enforcing compositional
structures in neural networks and suggest that such regularization may not be suf-
ficient to enhance compositional generalization.

1 INTRODUCTION

Compositional generalization refers to the ability to understand and produce novel combinations of
known components, a fundamental aspect of human cognition (Ito et al., 2022). Despite the success
of neural networks in various domains, they often struggle with compositional generalization, lim-
iting their applicability in tasks requiring systematic reasoning beyond the training data (Qu et al.,
2023; Klinger et al., 2020). Previous efforts to enhance compositional generalization have explored
various approaches, including architectural modifications and training strategies (Finn et al., 2017;
Lepori et al., 2023). One promising direction is the incorporation of regularization terms that en- Comment:

Citing MAML
in the context
of composi-
tional gener-
alization does
not seem en-
tirely appropri-
ate

courage certain properties in the learned representations (Yin et al., 2023).

In this paper, we introduce a training method that incorporates an explicit compositional regular-
ization term into the loss function. This regularization term is designed to penalize deviations from
expected compositional structures in the network’s internal representations, with the aim of encour-
aging the network to form compositional representations. We hypothesized that this approach would
enhance the network’s ability to generalize to unseen combinations. However, our experiments on
synthetic arithmetic expression datasets show that the inclusion of compositional regularization does
not lead to the expected improvements in generalization performance. In some cases, it even hinders
the learning process. Furthermore, we observe that increasing the complexity of arithmetic expres-
sions, such as using more operators or nestingComment:

The dataset
used in the
experiments
did not con-
tain a nesting
structure, but
some exper-
iments were
conducted
with increas-
ing complexity
by incorpo-
rating more
operators.

, exacerbates the models’ generalization difficulties
regardless of the regularization. These unexpected results highlight the challenges of enforcing
compositionality through regularization and suggest that this approach may not be straightforwardly
effective.

In summary, we propose a compositional regularization term intended to enhance compositional
generalization in neural networks, conduct extensive experiments to evaluate its impact, and analyze
the unexpected outcomes, including the impact of operator complexity, discussing potential reasons
why compositional regularization did not yield the anticipated benefits.
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2 RELATED WORK
Comment: An
incomplete and
too general
version of a
related work
section.

Compositional generalization in neural networks has been a topic of considerable research interest
(Klinger et al., 2020). Ito et al. (2022) explored abstract representations to tackle this issue, empha-
sizing the importance of compositionality in achieving human-like reasoning. Yin et al. (2023) pro-
posed consistency regularization training to enhance compositional generalization. Meta-learning
approaches, such as Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017), have also been
investigated to improve generalization capabilities. Lepori et al. (2023) studied structural composi-
tionality in neural networks, suggesting that networks may implicitly learn to decompose complex
tasks.

Our work differs by directly incorporating an explicit regularization term into the training objective
to enforce compositional structures. Despite the theoretical appeal, our findings indicate that such
regularization may not effectively enhance compositional generalization and that operator complex-
ity plays a significant role in the models’ performance limitations.

3 METHOD

Our goal is to enhance compositional generalization in neural networks by incorporating a composi-
tional regularization term into the training loss. We focus on a simple yet illustrative task: evaluating
arithmetic expressions involving basic operators.

3.1 MODEL ARCHITECTURE

We use an LSTM-based neural network (Goodfellow et al., 2016)Comment:
This should be
Hochreiter &
Schmidhuber
(1997).

to model the mapping from input
expressions to their computed results. The model consists of an embedding layer, an LSTM layer,
and a fully connected output layer.

3.2 COMPOSITIONAL REGULARIZATION

Let ht be the hidden state at time t. We define the compositional regularization term as the mean Comment:
This should be
more precise.
E.g. refer to
the embed-
ding hidden
state. A bet-
ter alternative
would be et
and et−1.

squared difference between successive hidden states:

Lcomp =
1

T − 1

T−1∑
t=1

∥ht+1 − ht∥2 (1)

where T is the length of the input sequence.

This term penalizes large changes in hidden states between successive time steps, encouraging the
model to form additive representations, which are a simple form of compositionality.

3.3 TRAINING OBJECTIVE

The total loss is the sum of the main loss (mean squared error between predicted and true results)
and the compositional regularization term weighted by a hyperparameter λ:

Ltotal = Lmain + λLcomp. (2)

We experimented with different values of λ to assess its impact on compositional generalization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We generated synthetic datasets of arithmetic expressions to evaluate compositional generalization.
The datasets consist of expressions combining digits and operators (e.g., “3+4”, “7*2”). We com-
pared models trained with and without the compositional regularization term and performed several
ablation studies to assess the impact of different hyperparameters, operator complexity, and archi-
tectural choices.
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Figure 1: Baseline model performance over epochs. Left: Training and test loss decrease over
epochs, indicating learning progress. Middle: Test accuracy increases, reaching approximately
84%.Comment:

Figure 1 shows
only up to
40% accuracy,
but since Fig-
ure 2 (Right),
which uses a
similar setup,
shows around
84%, it’s likely
that the x-axis
of Figure 1 is
truncated.

Right: Compositional loss remains steady, suggesting the model does not inherently develop
compositional representations without regularization.

4.1.1 DATASETS

• Training set: 1,000 randomly generated expressions using a limited set of numbers and
operators.

• Test set: 200 expressions not seen during training, including novel combinations of num-
bers and operators, as well as increased operator complexity.

4.1.2 IMPLEMENTATION DETAILS

• Models were trained for 30 epochs using the Adam optimizer and mean squared error loss.

• The compositional regularization term was weighted by λ = 0.1 unless otherwise specified.

• We evaluated model performance using test accuracy (percentage of correct predictions
withinComment:

“Within a tol-
erance” refers
to the fact that
the model re-
gresses its out-
put to match
the ground
truth numerical
answer. See
the Code Re-
view section.

a tolerance) and compositional loss.

• Experiments were repeated with different hyperparameters and operator complexities.

4.2 RESULTS

4.2.1 BASELINE PERFORMANCE

We first trained the baseline LSTM model without compositional regularization. Figure 1 shows the Comment:
The figure
lacks an ex-
planation for
the shadowed
area, which
should be clar-
ified as rep-
resenting the
standard devi-
ation across 3
or 4 indepen-
dent runs.

training and test loss, test accuracy, and compositional loss over epochs. As training progresses, both
training and test loss decrease, and test accuracy increases, reaching approximately 84% accuracy.
The compositional loss remains relatively steady, indicating that without regularization, the model

Comment:
This claim
cannot be in-
ferred from
Figure 1
(Right).

does not inherently develop compositional representations.Comment:
This section
is meant to
show the base-
line perfor-
mance, but it
also includes
the compo-
sitional loss
plot, which is
confusing.

4.2.2 IMPACT OF COMPOSITIONAL REGULARIZATION

We introduced the compositional regularization term with different weights λ and assessed its im-
pact. Figure 2 illustrates the effects of varying λ on training loss, compositional loss, and final test
accuracy. Higher values of λ led to a lower compositional loss but did not improve test accuracy.
In some cases, the test accuracy decreased. This suggests that while compositional regularization
encourages the learning of compositional representations as measured by the regularization term, it
may interfere with the main learning objective by constraining the model’s capacity to fit the training
data.

4.2.3 IMPACT OF OPERATOR COMPLEXITY

We investigated how increasing the operator complexity of arithmetic expressions affects model
performance. Figure 3 presents the training loss, validation loss, and final validation accuracy for
expressions with varying numbers of operators. Our results show that as the complexity of the ex-
pressions increases, the models’ ability to generalize diminishes significantly. Neither the baseline
model nor the model with compositional regularization could handle expressions with higher opera-
tor complexity effectively. This finding emphasizes that compositional regularization alone may not
address the challenges posed by complex compositional structures.
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Figure 2: Impact of compositional weight λ on model performance. Left: Training loss over epochs
for different λ. Higher λ values slightly increase training loss. Middle: Compositional loss de-
creases with higher λ,Comment:

This is a
stretch because
the paper has
not rigorously
shown that
lower compo-
sitional loss
leads to more
compositional-
ity.

indicating the regularization term effectively enforces compositionality.
Right: Final test accuracy does not improve with higher λ and may decrease, suggesting a trade-off
between compositional regularization and the primary learning objective.

Figure 3: Model performance on expressions with varying operator complexity. Left: Training
loss increases with operator complexity, indicating the models struggle to fit more complex data.
Middle: Validation loss is higher for complex expressions, reflecting poor generalization. Right:
Final validationComment:

This should
be “Final val-
idation loss
increases” to
match the fig-
ure, although
the mean-
ing remains
roughly the
same.

accuracy decreases significantly as operator complexity increases, underscoring
inherent limitations in handling complex compositional structures with compositional regularization
alone.

5 CONCLUSION

In this work, we introduced a compositional regularization term with the intention of enhancing
compositional generalization in neural networks. Our experiments on synthetic arithmetic expres-
sion datasets revealed that compositional regularization did not lead to the expected improvements
in generalization performance. In some cases, it even hindered the learning process. Additionally,
we found that increasing the complexity of arithmetic expressions exacerbates the models’ general-
ization difficulties, highlighting inherent limitations.

These findings highlight the challenges of enforcing compositional structures in neural networks
through regularization. Possible reasons for the lack of improvement include conflicts between the
regularization term and the primary learning objective, which may cause the network to prioritize
minimizing the compositional loss over fitting the data. Additionally, the measure of composition-
ality used in the regularization term may not align with the aspects of compositionality that are
critical for generalization. The synthetic dataset may also not adequately capture the complexities
of compositional generalization in real-world tasks, and increased operator complexity introduces
additional challenges that compositional regularization alone cannot overcome.

For future work, we suggest exploring alternative regularization strategies, refining the definition of
compositionality in the context of neural networks, and testing on more complex datasets. Investi-
gating models that can inherently handle higher operator complexity, such as those with recursive or
hierarchical structures, may also be beneficial. Our findings underscore the importance of rigorously
evaluating proposed methods and openly reporting negative or inconclusive results to advance our
understanding of the challenges in deep learning.
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SUPPLEMENTARY MATERIAL

A EFFECT OF EMBEDDING DIMENSION

We explored the impact of different embedding dimensions on model performance. Figure 4 shows
the training loss, compositional loss, and final test accuracy for embedding dimensions 16, 32, 64,
and 128. IncreasingComment:

Increasing the
embedding
dimension did
improve test
accuracy, but it
appears to be
plateauing.

the embedding dimension did not consistently improve test accuracy. While
larger embedding dimensions provide the model with greater capacity, our results indicate that
simply increasing model capacity is not sufficient to enhance compositional generalization in this Comment:

This could
be viewed as
hinting that
the regularizer
is applied to
the embedding
hidden state.

context. This suggests that the bottleneck may lie in the model’s ability to capture compositional
structures rather than in its representational capacity.

Figure 4: Effect of embedding dimension on model performance. Left: Training loss decreases
similarly across embedding dimensions, indicating comparable learning progress. Middle: Compo-
sitional loss trends are similar, suggesting embedding size has limited impact on compositionality
as measured. Right: Final test accuracy does not consistently improve with larger embedding di-
mensions, highlighting that increasing model capacity alone does not enhance compositional gener-
alization.

B INTEGRATION OF ATTENTION MECHANISM

We compared the baseline model with an enhanced model that incorporates an attention mecha-
nism Vaswani et al. (2017). The attention mechanism is known to improve performance in various
sequence-to-sequence tasks by allowing the model to focus on relevant parts of the input sequence.

5
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B.1 EXPERIMENTAL SETUP

We modified the baseline LSTM model to include an attention layer after the LSTM outputs. The
attention weights were calculated based on the hidden states, and a context vector was formed to aid
in the final output prediction.

B.2 RESULTS

The attention model achieves a test accuracy similar to the baseline, as shown in Figure 5. While the Comment:
The conclusion
here seems
wrong. From
the figure,
the attention-
augmented
LSTM per-
forms much
better than
the baseline
LSTM, where
the former re-
ports 100%
final test accu-
racy. See the
Code Review
for more de-
tails.

attention mechanism slightly improved the training dynamics, it did not lead to significant improve-
ments in generalization performance. This suggests that the challenges in compositional generaliza-
tion are not primarily due to the model’s ability to focus on relevant parts of the input sequence but
may be related to deeper architectural limitations or the need for more sophisticated mechanisms to
capture compositionality.

Figure 5: Comparison of baseline and attention models. Left: Training loss over epochs shows sim-
ilar convergence for both models. Middle: Compositional loss remains comparable, indicating that
attention does not significantly enhance compositional representations. Right: Final test accuracy is
similar for both models, suggesting that the attention mechanism does not address the compositional
generalization challenges.Comment:

The gener-
ated caption
seems to be
strongly influ-
enced by the
conclusion in
the main text.
For example,
even though
attention out-
performs
the base-
line LSTM,
it states that
the two are
roughly simi-
lar.

C ADDITIONAL EXPERIMENTS

C.1 ABLATION STUDY ON COMPOSITIONAL WEIGHT

We conducted an ablation study on the compositional weight λ to further investigate its impact on
model performance. Figures 6 and 7 show the training loss and final test accuracy for various values
of λ. Higher λ values effectively reduce the compositional loss but adversely affect test accuracy.
This reinforces the conclusion that emphasizing compositional regularization may conflict with the
primary learning objective.

C.2 COMPARISON OF LSTM AND RNN ARCHITECTURES

We compared the performance of LSTM and simple RNN architectures to assess the influence of
model choice on compositional generalization. Figure 8 illustrates the training loss and final test
accuracy for both models. The LSTM model showed marginal improvements over the simple RNN,
but both architectures struggled with compositional generalization, indicating that the limitations
are not solely due to the recurrent unit type.

C.3 DROPOUT IMPACT

We investigated the impact of dropout on model performance. Figure 9 shows the final test accuracy
for different dropout rates. We found that increasing the dropout rate did not lead to significant
improvements in generalization, suggesting that regularization techniques like dropout may not ad-
dress compositional generalization challenges. This indicates that standard regularization methods
may not be sufficient to overcome the inherent difficulties in learning compositional structures.

6
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Figure 6: Training loss over epochs for different values of compositional weight λ. Increasing
λ leads to slightly higher training loss, indicating potential interference with the primary learning
objective.

Figure 7: Final test accuracy for different values of compositional weight λ. Higher λ values do
not improve test accuracy and may lead to decreased performance, suggesting a trade-off between
compositional regularization and generalization.Comment:

Hard to draw
any conclusion
from this plot
alone.

Figure 8: Comparison of LSTM and RNN architectures. Left: Training loss over epochs shows
similar convergence patterns, with LSTM performing slightly better. Right: Final test accuracy is
marginally higher for LSTM, but both models struggle with compositional generalization, suggest-
ing that recurrent unit choice does not resolve the underlying challenges.

D HYPERPARAMETERS AND TRAINING DETAILS

We provide additional details on the hyperparameters and training procedures used in our experi-
ments:

7
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Figure 9: Final test accuracy for different dropout rates.Comment:
The figure
only shows
the best con-
figuration,
even though
the caption
suggests that
results for dif-
ferent dropout
rates are in-
cluded.

Higher dropout rates did not enhance
compositional generalization, indicating limited effectiveness of dropout in this context.

• Learning rate: 0.001
• Batch size: 32
• Embedding dimensions: Tested values of 16, 32, 64, 128
• Hidden units: 64 for LSTM layers
• Optimizer: Adam
• Activation functions: ReLU for hidden layers Comment:

ReLU is not
used

• Dropout rates: Tested values of 0.0, 0.2, and 0.5

Comment: 0.3
instead of 0.2

• Loss function: Mean squared error for main loss
• Regularization weight (λ): Tested values of 0.0 (baseline), 0.1, 0.3, 0.5, 0.7, 1.0

Comment:
0.01 instead of
0.3 and 0.7

• Number of epochs: 30

Comment:
Minor: tested
10, 30, and 50

E ADDITIONAL NOTES

• All experiments were implemented using PyTorch.
• Training was conducted on a single NVIDIA GPU.
• Early stopping was not used; models were trained for a fixed number of epochs.
• The synthetic dataset was generated with a predefined random seed for reproducibility.
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